Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node’s key.
- The right subtree of a node contains only nodes with keys greater than the node’s key.
- Both the left and right subtrees must also be binary search trees.
confused what
"{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
//还好对于int32位长整形,涉及溢出问题时,我们还可以用long来覆盖。 //如果函数形参是long的话,恐怕就得用额外一个标志位表示溢出了。 /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: bool isValidBST(TreeNode* root) { if(root == NULL){ return true; } else{ return _isValidBST(root->left, LONG_MIN, root->val) && _isValidBST(root->right, (long)root->val + 1, LONG_MAX); } } bool _isValidBST(TreeNode * root, long min, long max){ if(root == NULL){ return true; } if(root->val < min || root->val >= max){ return false; } else{ return _isValidBST(root->left, min, root->val) && _isValidBST(root->right, (long)root->val + 1, max); } } };