Sliding Window Maximum
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums =[1,3,-1,-3,5,3,6,7]
, and k = 3.Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7Therefore, return the max sliding window as
[3,3,5,5,6,7]
.Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array’s size for non-empty array.Follow up:
Could you solve it in linear time?
Use a heap. heap stores a index, nums[index] pair.
Heap is sorted by nums[index], it’s a maximum heap.
When queue.top().first is within the window, answer is the queue.top().second,
otherwise pop the queue until queue.top().first is located in the window.
class Solution { public: vector<int> maxSlidingWindow(vector<int>& nums, int k) { auto cmp = [](pair<int, int>& a, pair<int, int>& b){ return a.second < b.second; }; vector<int> ans; priority_queue<pair<int, int>, vector<pair<int, int>>, decltype(cmp)> q(cmp); if(nums.size() == 0 || k == 0) return ans; for(int i = 0; i < k - 1; i++){ q.push(make_pair(i, nums[i])); } for(int i = 0; i < nums.size() - k + 1; i++){ while(!q.empty() && q.top().first < i){ q.pop(); } q.push(make_pair(i + k - 1, nums[i + k - 1])); ans.push_back(q.top().second); } return ans; } };