Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5For example, the lowest common ancestor (LCA) of nodes
2and8is6. Another example is LCA of nodes2and4is2, since a node can be a descendant of itself according to the LCA definition.
- if p->val > q->val, swap q and p
- if root == null, reutrn null
- if root->val >= p->val && root->val <= q->val return root; //root is the lowest common ancestor
- if root->val < p->val , recursively find in root->right
- else , recursively find in root->left
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
//duplicates in tree?
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(p->val > q->val){
TreeNode * tmp = p;
p = q;
q = tmp;
}
return _lowestCommonAncestor(root, p, q);
}
TreeNode * _lowestCommonAncestor(TreeNode * root, TreeNode * p, TreeNode * q){
if(root == nullptr){
return nullptr;
}
else if(p->val <= root->val && q->val >= root->val){
return root;//find the common ancestor
}
else if(p->val > root->val){
return _lowestCommonAncestor(root->right, p, q);
}
else{
return _lowestCommonAncestor(root->left, p, q);
}
}
};