Find Minimum in Rotated Sorted Array II
Follow up for “Find Minimum in Rotated Sorted Array”:
What if duplicates are allowed?Would this affect the run-time complexity? How and why?
Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e.,
0 1 2 4 5 6 7might become4 5 6 7 0 1 2).Find the minimum element.
The array may contain duplicates.
10/10/2015 udpate
An iterative approach
class Solution {
public:
int findMin(vector<int>& nums) {
int left = 0;
int right = nums.size() - 1;
while(left < right){
int mid = left + (right - left) / 2;
if(nums[mid] < nums[right]){
right = mid;
}
else if(nums[mid] > nums[right]){
left = mid + 1;
}
else{
right = right - 1;
}
}
return nums[left];
}
};
//How big will the input array be?
//Will the element be negative?
//If duplicated are allowed, the worst case would be o(n)
class Solution {
public:
int findMin(vector<int>& nums) {
return _findMin(nums, 0, nums.size());
}
//[start, end)
int _findMin(vector<int>& nums, int start, int end){
//base condition
if(end - start == 1){
return nums[start];
}
//worst condition
else if(nums[start] == nums[end - 1]){
int mid = (start + end) / 2;
return min(_findMin(nums, start, mid), _findMin(nums, mid, end));
}
//ordinary case
else{
int mid = (start + end) / 2;
if(nums[start] < nums[end - 1]){
//pivot is not in [start, end)
return nums[start];
}
else{
//pivot is in [start, end)
//nums[start] > nums[end - 1]
if(nums[mid] >= nums[start]){
return _findMin(nums, mid + 1, end);
}
else{
return _findMin(nums, start + 1, mid + 1);//BUG: change start to start + 1.
//since numns[start] is bigger than nums[mid], so start can't be the result.
}
}
}
}
};
