Combination Sum
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set
2,3,6,7
and target7
,
A solution set is:
[7]
[2, 2, 3]
Tags: array, backtracking
第一次在Linux下解题,还是直接在文本框里写,第一次落了一个分号,第二次_combinationSum拼成了_combinatonSum.两次编译没通过.修改后直接AC.
这次写的很慢,一步一步地检查.在提交前自己就发现了几个BUG.直接解决掉了.觉得慢写也有慢写的好处.一次就AC的感觉还是很爽的.
正文:
直接递归,然后剪枝.这里可以先对candidates进行升序排序.递归过程中可以pass掉一些元素,提升效率.
比较tricky的是它不允许重复的结果.这里我在递归函数_combinationSum中加入了一个参数start标记在candidates中循环的起点,以消除重复.
C++:
class Solution { public: void _combinationSum(vector<vector<int> >& resultSet, vector<int>& currentResult, vector<int> & candidates, vector<int>::iterator start, int target){ /**resultSet: the return value, final result * currentResult: current possible result. it's an element of final result. * candidates: sorted candidates value * start: start iterator of candidates. add this parameter to avoid duplicate results. * target: current target. It decreses by recursing, increases by backtracking. * BUG: Duplicate results. **/ if (target == 0){ //found a solution vector<int> re(currentResult); sort(re.begin(), re.end()); resultSet.push_back(re); return; } else{ //target > 0, continue to find a solution beneath current branch for(vector<int>::iterator it = start; it != candidates.end(); it++){ if(*it > target){ //candidates are sorted in increasing order, if *it > target, all the following elements in candidates is bigger than target. break; } else{ //push current element, go deeper currentResult.push_back(*it); _combinationSum(resultSet, currentResult, candidates, it, target - *it); currentResult.pop_back(); } } } } vector<vector<int> > combinationSum(vector<int> &candidates, int target) { vector<vector<int> > resultSet; vector<int> currentResult; if(candidates.empty()){ return resultSet; } sort(candidates.begin(), candidates.end()); _combinationSum(resultSet, currentResult, candidates, candidates.begin(), target); return resultSet; } };